3.648 \(\int \frac{1}{\sqrt{f+g x} \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=136 \[ -\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{\sqrt{c} \sqrt{a+c x^2} \sqrt{f+g x}} \]

[Out]

(-2*Sqrt[-a]*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 -
(Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(Sqrt[c]*Sqrt[f + g*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0592399, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {719, 419} \[ -\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{\sqrt{c} \sqrt{a+c x^2} \sqrt{f+g x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

(-2*Sqrt[-a]*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 -
(Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(Sqrt[c]*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{f+g x} \sqrt{a+c x^2}} \, dx &=\frac{\left (2 a \sqrt{\frac{c (f+g x)}{c f-\frac{a \sqrt{c} g}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} g x^2}{\sqrt{-a} \left (c f-\frac{a \sqrt{c} g}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \sqrt{c} \sqrt{f+g x} \sqrt{a+c x^2}}\\ &=-\frac{2 \sqrt{-a} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{c} f+\sqrt{-a} g}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{\sqrt{c} \sqrt{f+g x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.226461, size = 186, normalized size = 1.37 \[ \frac{2 i (f+g x) \sqrt{\frac{g \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{f+g x}} \sqrt{-\frac{-g x+\frac{i \sqrt{a} g}{\sqrt{c}}}{f+g x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}{\sqrt{f+g x}}\right ),\frac{\sqrt{c} f-i \sqrt{a} g}{\sqrt{c} f+i \sqrt{a} g}\right )}{g \sqrt{a+c x^2} \sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

((2*I)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*x
)*EllipticF[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f +
I*Sqrt[a]*g)])/(g*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.328, size = 200, normalized size = 1.5 \begin{align*} 2\,{\frac{ \left ( cf-\sqrt{-ac}g \right ) \sqrt{gx+f}\sqrt{c{x}^{2}+a}}{cg \left ( cg{x}^{3}+cf{x}^{2}+agx+af \right ) }{\it EllipticF} \left ( \sqrt{-{\frac{c \left ( gx+f \right ) }{\sqrt{-ac}g-cf}}},\sqrt{-{\frac{\sqrt{-ac}g-cf}{\sqrt{-ac}g+cf}}} \right ) \sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) g}{\sqrt{-ac}g-cf}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) g}{\sqrt{-ac}g+cf}}}\sqrt{-{\frac{c \left ( gx+f \right ) }{\sqrt{-ac}g-cf}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(c*f-(-a*c)^(1/2)*g)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*
g+c*f))^(1/2))*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^
(1/2)*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/g/c/(c*g*x^3+c*f*x^2+a*g*x+a*f)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*sqrt(g*x + f)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a} \sqrt{g x + f}}{c g x^{3} + c f x^{2} + a g x + a f}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(g*x + f)/(c*g*x^3 + c*f*x^2 + a*g*x + a*f), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + c x^{2}} \sqrt{f + g x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*sqrt(f + g*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*sqrt(g*x + f)), x)